
Package: simTool (via r-universe)
September 11, 2024

Type Package
Title Conduct Simulation Studies with a Minimal Amount of Source Code
Version 1.1.7.9000
Maintainer Marsel Scheer <scheer@freescience.de>
Description Tool for statistical simulations that have two components.

One component generates the data and the other one analyzes the
data. The main aims of the package are the reduction of the
administrative source code (mainly loops and management code
for the results) and a simple applicability of the package that
allows the user to quickly learn how to work with it. Parallel
computing is also supported. Finally, convenient functions are
provided to summarize the simulation results.

Depends R (>= 2.14.0)
Imports dplyr (>= 0.7.2), purrr (>= 0.2.3), tidyr (>= 1.0.0), tibble

(>= 2.0.0), vctrs (>= 0.3.0), parallel, methods
Suggests ggplot2, knitr, boot, broom, rmarkdown, tinytest, lintr,

roxygen2, covr
License GPL-3
VignetteBuilder knitr
RoxygenNote 7.1.1

URL https://github.com/MarselScheer/simTool

BugReports https://github.com/MarselScheer/simTool/issues

Repository https://marselscheer.r-universe.dev
RemoteUrl https://github.com/marselscheer/simtool
RemoteRef HEAD
RemoteSha 2a78ea451ac007a78e44c774635ec5ef7851d501

Contents
eval_tibbles . 2
expand_tibble . 5
print.eval_tibbles . 6

1

https://github.com/MarselScheer/simTool
https://github.com/MarselScheer/simTool/issues

2 eval_tibbles

Index 7

eval_tibbles Workhorse for simulation studies

Description

Generates data according to all provided constellations in data_tibble and applies all provided
constellations in proc_tibble to them.

Usage

eval_tibbles(
data_grid,
proc_grid = expand_tibble(proc = "length"),
replications = 1,
discard_generated_data = FALSE,
post_analyze = identity,
summary_fun = NULL,
group_for_summary = NULL,
ncpus = 1L,
cluster = NULL,
cluster_seed = rep(12345, 6),
cluster_libraries = NULL,
cluster_global_objects = NULL,
envir = globalenv(),
simplify = TRUE

)

Arguments

data_grid a data.frame or tibble where the first column is a character vector with func-
tion names. The other columns contain parameters for the functions specified
in the first column. Parameters with NA are ignored. If a column with name
.truth exist, then the corresponding entry is passed to functions generated from
proc_grid and the function specified in post_analyze.

proc_grid similar as data_grid the first column must contain function names. The other
columns contain parameters for the functions specified in the first column. The
data generated according to data_grid will always be passed to the first un-
specified argument of the functions specified in the first column of proc_grid.
If a function specified in proc_grid has an argument .truth, then the corre-
sponding entry in the .truth column from data_grid is passed to the .truth
parameter or if no column .truth exist in data_grid, then all parameters used
for the data generation are passed to the .truth parameter.

replications number of replications for the simulation

eval_tibbles 3

discard_generated_data

if TRUE the generated data is deleted after all function constellations in proc_grid
have been applied. Otherwise, ALL generated data sets will be part of the re-
turned object.

post_analyze this is a convenience function, that is applied directly after the data analyzing
function. If this function has an argument .truth, then the corresponding entry
in the .truth column from data_grid is passed to the .truth parameter or
if no column .truth exist in data_grid, then all parameters used for the data
generation are passed to the .truth parameter.

summary_fun named list of univariate function to summarize the results (numeric or logical)
over the replications, e.g. list(mean = mean, sd = sd).

group_for_summary

if the result returned by the data analyzing function or post_analyze is a data.frame
with more than one row, one usually is interested in summarizing the results
while grouping for some variables. This group variables can be passed as a
character vector into group_for_summary

ncpus a cluster of ncpus workers (R-processes) is created on the local machine to con-
duct the simulation. If ncpus equals one no cluster is created and the simulation
is conducted by the current R-process.

cluster a cluster generated by the parallel package that will be used to conduct the
simulation. If cluster is specified, then ncpus will be ignored.

cluster_seed if the simulation is done in parallel manner, then the combined multiple-recursive
generator from L’Ecuyer (1999) is used to generate random numbers. Thus
cluster_seed must be a (signed) integer vector of length 6. The 6 elements of
the seed are internally regarded as 32-bit unsigned integers. Neither the first
three nor the last three should be all zero, and they are limited to less than
4294967087 and 4294944443 respectively.

cluster_libraries

a character vector specifying the packages that should be loaded by the workers.
cluster_global_objects

a character vector specifying the names of R objects in the global environment
that should be exported to the global environment of every worker.

envir must be provided if the functions specified in data_grid or proc_grid are not
part of the global environment.

simplify usually the result column is nested, by default it is tried to unnest it.

Value

The returned object list of the class eval_tibbles, where the element simulations contain the
results of the simulation.

Note

If cluster is provided by the user the function eval_tibbles will NOT stop the cluster. This has
to be done by the user. Conducting parallel simulations by specifying ncpus will internally create a
cluster and stop it after the simulation is done.

4 eval_tibbles

Author(s)

Marsel Scheer

Examples

rng <- function(data, ...) {
ret <- range(data)
names(ret) <- c("min", "max")
ret

}

The following line is only necessary
if the examples are not executed in the global
environment, which for instance is the case when
the oneline-documentation
http://marselscheer.github.io/simTool/reference/eval_tibbles.html
is build. In such case eval_tibble() would search the
above defined function rng() in the global environment where
it does not exist!
eval_tibbles <- purrr::partial(eval_tibbles, envir = environment())

dg <- expand_tibble(fun = "rnorm", n = c(5L, 10L))
pg <- expand_tibble(proc = c("rng", "median", "length"))

eval_tibbles(dg, pg, rep = 2, simplify = FALSE)
eval_tibbles(dg, pg, rep = 2)
eval_tibbles(dg, pg,

rep = 2,
post_analyze = purrr::compose(as.data.frame, t)

)
eval_tibbles(dg, pg, rep = 2, summary_fun = list(mean = mean, sd = sd))

regData <- function(n, SD) {
data.frame(
x = seq(0, 1, length = n),
y = rnorm(n, sd = SD)

)
}

eg <- eval_tibbles(
expand_tibble(fun = "regData", n = 5L, SD = 1:2),
expand_tibble(proc = "lm", formula = c("y~x", "y~I(x^2)")),
replications = 3

)
eg

presever_rownames <- function(mat) {
rn <- rownames(mat)
ret <- tibble::as_tibble(mat)
ret$term <- rn
ret

}

expand_tibble 5

eg <- eval_tibbles(
expand_tibble(fun = "regData", n = 5L, SD = 1:2),
expand_tibble(proc = "lm", formula = c("y~x", "y~I(x^2)")),
post_analyze = purrr::compose(presever_rownames, coef, summary),
post_analyze = broom::tidy, # is a nice out of the box alternative
summary_fun = list(mean = mean, sd = sd),
group_for_summary = "term",
replications = 3

)
eg$simulation

dg <- expand_tibble(fun = "rexp", rate = c(10, 100), n = c(50L, 100L))
pg <- expand_tibble(proc = c("t.test"), conf.level = c(0.8, 0.9, 0.95))
et <- eval_tibbles(dg, pg,

ncpus = 1,
replications = 10^1,
post_analyze = function(ttest, .truth) {
mu <- 1 / .truth$rate
ttest$conf.int[1] <= mu && mu <= ttest$conf.int[2]

},
summary_fun = list(mean = mean, sd = sd)

)
et

dg <- dplyr::bind_rows(
expand_tibble(fun = "rexp", rate = 10, .truth = 1 / 10, n = c(50L, 100L)),
expand_tibble(fun = "rnorm", .truth = 0, n = c(50L, 100L))

)
pg <- expand_tibble(proc = c("t.test"), conf.level = c(0.8, 0.9, 0.95))
et <- eval_tibbles(dg, pg,

ncpus = 1,
replications = 10^1,
post_analyze = function(ttest, .truth) {

ttest$conf.int[1] <= .truth && .truth <= ttest$conf.int[2]
},
summary_fun = list(mean = mean, sd = sd)

)
et
need to remove the locally adapted eval_tibbles()
otherwise executing the examples would mask
eval_tibbles from simTool-namespace.
rm(eval_tibbles)

expand_tibble Creates a tibble from All Combinations

Description

Actually a wrapper for expand.grid, but character vectors will stay as characters.

6 print.eval_tibbles

Usage

expand_tibble(...)

Arguments

... vectors, factors or a list containing these.

Value

See expand.grid but instead of a data.frame a tibble is returned.

Author(s)

Marsel Scheer

See Also

expand.grid

Examples

expand_tibble(fun = "rnorm", mean = 1:4, sd = 2:5)

print.eval_tibbles Printing simulation results

Description

Prints objects created by eval_tibbles()

Usage

S3 method for class 'eval_tibbles'
print(x, ...)

Arguments

x object of class eval_tibbles

... not used. only necessary to define the function consistently with respect to
print(x, ...)

Author(s)

Marsel Scheer

Index

data.frame, 6

eval_tibbles, 2
expand.grid, 5, 6
expand_tibble, 5

print.eval_tibbles, 6

tibble, 6

7

	eval_tibbles
	expand_tibble
	print.eval_tibbles
	Index

